Knoldus Inc


MLOps: ML Workflow Best Practices

MLOps (a compound of “machine learning” and “operations”) is a practice for collaboration and communication between data scientists and operations professionals to help manage the production machine learning lifecycle. Similar to the DevOps term in the software development world, MLOps looks to increase automation and improve the quality of production ML while also focusing on business and regulatory requirements. MLOps applies to the entire ML lifecycle - from integrating with model generation (software development lifecycle, continuous integration/continuous delivery), orchestration, and deployment, to health, diagnostics, governance, and business metrics.

This webinar video through light on, core practices in MLOps that will help data science teams scale to the enterprise level. You’ll learn the primary functions of MLOps, and what tasks are suggested to accelerate your team’s machine learning pipeline. and also learn how teams use MLOps for more productive machine learning workflows.



Vinay Kumar
Software Consultant at Knoldus Inc.

Simply fill out the form to download